Measures of tie centrality
tie_degree(object, normalized = TRUE)
tie_closeness(object, normalized = TRUE)
tie_betweenness(object, normalized = TRUE)
tie_eigenvector(object, normalized = TRUE)
An object of a migraph-consistent class:
matrix (adjacency or incidence) from {base}
R
edgelist, a data frame from {base}
R or tibble from {tibble}
igraph, from the {igraph}
package
network, from the {network}
package
tbl_graph, from the {tidygraph}
package
Logical scalar, whether the centrality scores are normalized. Different denominators are used depending on whether the object is one-mode or two-mode, the type of centrality, and other arguments.
tie_degree()
: Calculate the degree centrality of edges in a network
tie_closeness()
: Calculate the closeness of each edge to each other edge
in the network.
tie_betweenness()
: Calculate number of shortest paths going through an edge
tie_eigenvector()
: Calculate the eigenvector centrality of edges in a network
Other measures:
centralisation
,
centrality
,
closure
,
cohesion()
,
diversity
,
features
,
holes
tie_degree(ison_adolescents)
#> `Betty-Sue` Sue-Alic…¹ Alice…² Sue-D…³ Alice…⁴ Jane-…⁵ Sue-P…⁶ Alice…⁷ Pam-C…⁸
#> 1 0.333 0.667 0.444 0.556 0.556 0.333 0.556 0.556 0.333
#> # ... with 1 more from this nodeset in the vector.
(ec <- tie_closeness(ison_adolescents))
#> `Betty-Sue` Sue-Alic…¹ Alice…² Sue-D…³ Alice…⁴ Jane-…⁵ Sue-P…⁶ Alice…⁷ Pam-C…⁸
#> 1 0.562 0.692 0.6 0.643 0.643 0.5 0.692 0.692 0.562
#> # ... with 1 more from this nodeset in the vector.
plot(ec)
ison_adolescents %>%
activate(edges) %>% mutate(weight = ec) %>%
autographr()
(tb <- tie_betweenness(ison_adolescents))
#> `Betty-Sue` Sue-Alic…¹ Alice…² Sue-D…³ Alice…⁴ Jane-…⁵ Sue-P…⁶ Alice…⁷ Pam-C…⁸
#> 1 7 3 5 4.5 2.5 2 7.5 7.5 12
#> # ... with 1 more from this nodeset in the vector.
plot(tb)
ison_adolescents %>%
activate(edges) %>% mutate(weight = tb) %>%
autographr()
tie_eigenvector(ison_adolescents)
#> `Betty-Sue` Sue-Alic…¹ Alice…² Sue-D…³ Alice…⁴ Jane-…⁵ Sue-P…⁶ Alice…⁷ Pam-C…⁸
#> 1 0.366 0.638 0.447 0.524 0.541 0.333 0.502 0.520 0.236
#> # ... with 1 more from this nodeset in the vector.